Some Inequalities for the Square Root of a Positive Definite Matrix*

RICHARD BELLMAN
University of Southern Califormill
Las Angeles, California

Communicated by Alan J. Hoffman

I. INTROI)C(TION

Let A be a positive definite matrix, and let $A^{1 / 2}$ be the unique positive definite square root of A. Let $A \geqslant B$ denote that $A-B$ is nonnegative definite. Then we wish to demonstrate

Theorem 1. The following inequalities are valid:
(a) If A $\geqslant B \geqslant 0$, then $A^{1 / 2} \geqslant B^{1 / 2}$.
(b) If $A, B>0$, then $\left(\lambda A+(1-\lambda B)^{1: 2} \geqslant \lambda A^{12}+\left(1 \quad \lambda \mid B^{12}\right.\right.$, !or $0 \leqslant \lambda \leqslant 1$.
(c) I! $A, B \geqslant 0$, then

$$
\binom{A+B}{2} \leqslant\binom{ A^{2}+B^{2}}{2}^{1 / 2} \leqslant \cdots \leqslant\binom{ A^{2}+B^{2}}{2} \leqslant \cdots
$$

$\operatorname{lor} N=1,2, \ldots$.
The results are certainly in the literature in various places. What is of interest is the method we employ based upon a direct representation of $A^{1 / 2}$. Establishing inequalities of the foregoing type is complicated by the fact that $A \leqslant B$ does not necessarily imply that $A^{2} \leqslant B^{2}$; see $[1$.

* 1)edicated to Professor A. M. Ostrowski on his 75th birthday.

Linear Algebra and Its Applications 1, 321-304 (1968)
Copyright (\%) 1968 by American Elsevier Publishing Company, Inc.
2. REPRESENTATION FOR $A^{1 / 2}$

Let (y, z) denote the inner product of two N-dimensional vectors y and z. Consider the problem of determining the minimum of the quadratic functional

$$
\begin{equation*}
J(x)=\int_{0}^{T}\left[\left(x^{\prime}, x^{\prime}\right)+(x, A x)\right] d t \tag{1}
\end{equation*}
$$

where $x^{\prime}=d x / d t$ and $A>0$, over all vectors $x(t)$ such that $x^{\prime} \in L^{2}(0, T)$ and $x(0)=c$. Then it is easy to show that the minimum exists and that

$$
\begin{equation*}
\min _{x} J(x)=(c, R(T) c) \tag{2}
\end{equation*}
$$

where $R(T)$ is a positive definite matrix [2]. The theory of dynamic programming yields the Riccati differential equation

$$
\begin{equation*}
R^{\prime}=A-R^{2}, \quad R(0)=0 \tag{3}
\end{equation*}
$$

It is easy to see that $R(T)$ is monotone increasing in T and that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} R(T)=A^{1 / 2} \tag{4}
\end{equation*}
$$

Hence, we have the representation

$$
\begin{equation*}
\left(c, A^{1 / 2} c\right)=\lim _{T \rightarrow \infty}\left[\min _{x} \int_{0}^{T}\left[\left(x^{\prime}, x^{\prime}\right)+(x, A x)\right] d t\right] \tag{5}
\end{equation*}
$$

3. PROOF OF THEOREM $1(a, b)$

From (5), the proof of the inequalities (a) and (b) follows easily. That of (a) is immediate; that of (b) follows from

$$
\begin{align*}
& \int_{0}^{T}\left[\left(x^{\prime}, x^{\prime}\right)+(x,(\lambda A+(1-\lambda) B) x)\right] d t \\
& \quad=\lambda \int_{0}^{T}\left[\left(x^{\prime}, x^{\prime}\right)+(x, A x)\right] d t+(1-\lambda) \int_{0}^{T}\left[\left(x^{\prime}, x^{\prime}\right)+(x, B x)\right] d t \tag{6}
\end{align*}
$$

Linear Algebra and I/s Applications 1, 321-324 (1968)
and the obvious result

$$
\begin{equation*}
\min _{x} \int_{0}^{T}[\cdots] d l \geqslant \lambda \min _{x} \int_{0}^{T}[\cdots] d t+(1-\lambda) \min _{x} \int_{0}^{T}[\cdots] d t \tag{7}
\end{equation*}
$$

4. PROOF OF THEOREM 1 (c)

To establish (c), we begin with

$$
\begin{align*}
& (A-B)^{2} \geqslant 0 \\
& A^{2}+B^{2} \geqslant A B+B A \tag{8}
\end{align*}
$$

This is equivalent to the relation

$$
\begin{equation*}
\left(\frac{A+B}{2}\right)^{2} \leqslant\left(\frac{A^{2}+B^{2}}{2}\right) \tag{9}
\end{equation*}
$$

Applying Theorem 1 (a) this yields

$$
\begin{equation*}
\left(\frac{A+B}{2}\right) \leqslant\left(\frac{A^{2}+B^{2}}{2}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

Replacing A by A^{2} and B by B^{2}, this yields

$$
\begin{equation*}
\left(\frac{A^{2}+B^{2}}{2}\right) \leqslant\left(\frac{A^{4}+B^{4}}{2}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

Applying Theorem 1 (a) again, we have

$$
\begin{equation*}
\left(\frac{A^{2}+B^{2}}{2}\right)^{1 / 2} \leqslant\left(\frac{A^{4}+B^{4}}{2}\right)^{1 / 4} \tag{12}
\end{equation*}
$$

and so on.
It is easy to see that

$$
\begin{equation*}
M(A, B)=\lim _{N \rightarrow \infty}\left(\frac{A^{2^{N}}+B^{2^{N}}}{2}\right)^{N / 2} \tag{13}
\end{equation*}
$$

exists and determines a matrix which belongs to the convex set of matrices which majorize both A and B.
5. inequalities for A^{-1}

Let us note in passing that the same method can be used to obtain inequalities for A^{-1}, starting with the representation

$$
\begin{equation*}
\left(c, A^{-1} c\right)=\max [2(x, c)-(x, A x)] \tag{14}
\end{equation*}
$$

for $A>0$. From this follows the well-known result

$$
\begin{equation*}
A>B>0 \text { implies that } A^{-1}<B^{-1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
(\lambda A+(1-\lambda) B)^{-1} \leqslant \lambda A^{-1}-(1-\lambda) B^{-1} \tag{16}
\end{equation*}
$$

for $A, B>0,0 \leqslant \lambda \leqslant 1$.

REFERENCES

1 R. Bellman, Introduction to Matrix Analysis, MoGraw-Hill, New York, 196\%.
2 R. Bellman, Introduction to Modern Control Theory, Academic Press, New York, 1968.

Received November 27, 1967

Linear Algebra and Its Applications 1, 321-324 (1968)

